3.9.59 \(\int \frac {x (c x^2)^{3/2}}{(a+b x)^2} \, dx\)

Optimal. Leaf size=111 \[ -\frac {a^4 c \sqrt {c x^2}}{b^5 x (a+b x)}-\frac {4 a^3 c \sqrt {c x^2} \log (a+b x)}{b^5 x}+\frac {3 a^2 c \sqrt {c x^2}}{b^4}-\frac {a c x \sqrt {c x^2}}{b^3}+\frac {c x^2 \sqrt {c x^2}}{3 b^2} \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {15, 43} \begin {gather*} -\frac {a^4 c \sqrt {c x^2}}{b^5 x (a+b x)}+\frac {3 a^2 c \sqrt {c x^2}}{b^4}-\frac {4 a^3 c \sqrt {c x^2} \log (a+b x)}{b^5 x}-\frac {a c x \sqrt {c x^2}}{b^3}+\frac {c x^2 \sqrt {c x^2}}{3 b^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*(c*x^2)^(3/2))/(a + b*x)^2,x]

[Out]

(3*a^2*c*Sqrt[c*x^2])/b^4 - (a*c*x*Sqrt[c*x^2])/b^3 + (c*x^2*Sqrt[c*x^2])/(3*b^2) - (a^4*c*Sqrt[c*x^2])/(b^5*x
*(a + b*x)) - (4*a^3*c*Sqrt[c*x^2]*Log[a + b*x])/(b^5*x)

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int \frac {x \left (c x^2\right )^{3/2}}{(a+b x)^2} \, dx &=\frac {\left (c \sqrt {c x^2}\right ) \int \frac {x^4}{(a+b x)^2} \, dx}{x}\\ &=\frac {\left (c \sqrt {c x^2}\right ) \int \left (\frac {3 a^2}{b^4}-\frac {2 a x}{b^3}+\frac {x^2}{b^2}+\frac {a^4}{b^4 (a+b x)^2}-\frac {4 a^3}{b^4 (a+b x)}\right ) \, dx}{x}\\ &=\frac {3 a^2 c \sqrt {c x^2}}{b^4}-\frac {a c x \sqrt {c x^2}}{b^3}+\frac {c x^2 \sqrt {c x^2}}{3 b^2}-\frac {a^4 c \sqrt {c x^2}}{b^5 x (a+b x)}-\frac {4 a^3 c \sqrt {c x^2} \log (a+b x)}{b^5 x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 82, normalized size = 0.74 \begin {gather*} \frac {\left (c x^2\right )^{3/2} \left (-3 a^4+9 a^3 b x-12 a^3 (a+b x) \log (a+b x)+6 a^2 b^2 x^2-2 a b^3 x^3+b^4 x^4\right )}{3 b^5 x^3 (a+b x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*(c*x^2)^(3/2))/(a + b*x)^2,x]

[Out]

((c*x^2)^(3/2)*(-3*a^4 + 9*a^3*b*x + 6*a^2*b^2*x^2 - 2*a*b^3*x^3 + b^4*x^4 - 12*a^3*(a + b*x)*Log[a + b*x]))/(
3*b^5*x^3*(a + b*x))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.07, size = 85, normalized size = 0.77 \begin {gather*} \left (c x^2\right )^{3/2} \left (\frac {-3 a^4+9 a^3 b x+6 a^2 b^2 x^2-2 a b^3 x^3+b^4 x^4}{3 b^5 x^3 (a+b x)}-\frac {4 a^3 \log (a+b x)}{b^5 x^3}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(x*(c*x^2)^(3/2))/(a + b*x)^2,x]

[Out]

(c*x^2)^(3/2)*((-3*a^4 + 9*a^3*b*x + 6*a^2*b^2*x^2 - 2*a*b^3*x^3 + b^4*x^4)/(3*b^5*x^3*(a + b*x)) - (4*a^3*Log
[a + b*x])/(b^5*x^3))

________________________________________________________________________________________

fricas [A]  time = 1.10, size = 91, normalized size = 0.82 \begin {gather*} \frac {{\left (b^{4} c x^{4} - 2 \, a b^{3} c x^{3} + 6 \, a^{2} b^{2} c x^{2} + 9 \, a^{3} b c x - 3 \, a^{4} c - 12 \, {\left (a^{3} b c x + a^{4} c\right )} \log \left (b x + a\right )\right )} \sqrt {c x^{2}}}{3 \, {\left (b^{6} x^{2} + a b^{5} x\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^2)^(3/2)/(b*x+a)^2,x, algorithm="fricas")

[Out]

1/3*(b^4*c*x^4 - 2*a*b^3*c*x^3 + 6*a^2*b^2*c*x^2 + 9*a^3*b*c*x - 3*a^4*c - 12*(a^3*b*c*x + a^4*c)*log(b*x + a)
)*sqrt(c*x^2)/(b^6*x^2 + a*b^5*x)

________________________________________________________________________________________

giac [A]  time = 1.17, size = 96, normalized size = 0.86 \begin {gather*} -\frac {1}{3} \, c^{\frac {3}{2}} {\left (\frac {12 \, a^{3} \log \left ({\left | b x + a \right |}\right ) \mathrm {sgn}\relax (x)}{b^{5}} + \frac {3 \, a^{4} \mathrm {sgn}\relax (x)}{{\left (b x + a\right )} b^{5}} - \frac {3 \, {\left (4 \, a^{3} \log \left ({\left | a \right |}\right ) + a^{3}\right )} \mathrm {sgn}\relax (x)}{b^{5}} - \frac {b^{4} x^{3} \mathrm {sgn}\relax (x) - 3 \, a b^{3} x^{2} \mathrm {sgn}\relax (x) + 9 \, a^{2} b^{2} x \mathrm {sgn}\relax (x)}{b^{6}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^2)^(3/2)/(b*x+a)^2,x, algorithm="giac")

[Out]

-1/3*c^(3/2)*(12*a^3*log(abs(b*x + a))*sgn(x)/b^5 + 3*a^4*sgn(x)/((b*x + a)*b^5) - 3*(4*a^3*log(abs(a)) + a^3)
*sgn(x)/b^5 - (b^4*x^3*sgn(x) - 3*a*b^3*x^2*sgn(x) + 9*a^2*b^2*x*sgn(x))/b^6)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 88, normalized size = 0.79 \begin {gather*} -\frac {\left (c \,x^{2}\right )^{\frac {3}{2}} \left (-b^{4} x^{4}+2 a \,b^{3} x^{3}+12 a^{3} b x \ln \left (b x +a \right )-6 a^{2} b^{2} x^{2}+12 a^{4} \ln \left (b x +a \right )-9 a^{3} b x +3 a^{4}\right )}{3 \left (b x +a \right ) b^{5} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c*x^2)^(3/2)/(b*x+a)^2,x)

[Out]

-1/3*(c*x^2)^(3/2)*(-b^4*x^4+2*a*b^3*x^3+12*a^3*b*x*ln(b*x+a)-6*a^2*b^2*x^2+12*a^4*ln(b*x+a)-9*a^3*b*x+3*a^4)/
x^3/b^5/(b*x+a)

________________________________________________________________________________________

maxima [A]  time = 1.62, size = 132, normalized size = 1.19 \begin {gather*} \frac {\left (c x^{2}\right )^{\frac {3}{2}} a}{b^{3} x + a b^{2}} - \frac {4 \, \left (-1\right )^{\frac {2 \, c x}{b}} a^{3} c^{\frac {3}{2}} \log \left (\frac {2 \, c x}{b}\right )}{b^{5}} - \frac {4 \, \left (-1\right )^{\frac {2 \, a c x}{b}} a^{3} c^{\frac {3}{2}} \log \left (-\frac {2 \, a c x}{b {\left | b x + a \right |}}\right )}{b^{5}} - \frac {2 \, \sqrt {c x^{2}} a c x}{b^{3}} + \frac {\left (c x^{2}\right )^{\frac {3}{2}}}{3 \, b^{2}} + \frac {4 \, \sqrt {c x^{2}} a^{2} c}{b^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^2)^(3/2)/(b*x+a)^2,x, algorithm="maxima")

[Out]

(c*x^2)^(3/2)*a/(b^3*x + a*b^2) - 4*(-1)^(2*c*x/b)*a^3*c^(3/2)*log(2*c*x/b)/b^5 - 4*(-1)^(2*a*c*x/b)*a^3*c^(3/
2)*log(-2*a*c*x/(b*abs(b*x + a)))/b^5 - 2*sqrt(c*x^2)*a*c*x/b^3 + 1/3*(c*x^2)^(3/2)/b^2 + 4*sqrt(c*x^2)*a^2*c/
b^4

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x\,{\left (c\,x^2\right )}^{3/2}}{{\left (a+b\,x\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(c*x^2)^(3/2))/(a + b*x)^2,x)

[Out]

int((x*(c*x^2)^(3/2))/(a + b*x)^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x \left (c x^{2}\right )^{\frac {3}{2}}}{\left (a + b x\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x**2)**(3/2)/(b*x+a)**2,x)

[Out]

Integral(x*(c*x**2)**(3/2)/(a + b*x)**2, x)

________________________________________________________________________________________